To date, discarded tires are reused in many applications, however, because of the enormous quantity decommissioned annually, it is essential to continue researching new recycling methods as well as applications to reduce waste and preserve new resources. In the present study, a simple recycling technology of end-of-life tire (ELT) powder is proposed, and the influence of steel slag as filler is assessed. Europe produces about 7 Mt of steel slag annually, and although most of it is reused as an artificial aggregate, about 15% is still landfilled. Also in the case of steel slag, the study of new applications is mandatory so that the combination of these two waste materials, in a 100% recycled composite fits across different industrial sectors facing the same environmental issue. It was found that the leaching of the slag incorporated in the rubber matrix is reduced and that the ELT powder recycled by this technology gives rise to a well-cohesive material. A good rubber-filler interaction was found by swelling test and differential scanning calorimetry (DSC) analysis. The slag reduces the friction coefficient and increases the thermal conductivity. The experimental results showed how some properties of recycled ELT can be improved by adding the steel slag.

Characterization of recycled end-of-life rubber tire filled with black slag

La Monica M.;
2024-01-01

Abstract

To date, discarded tires are reused in many applications, however, because of the enormous quantity decommissioned annually, it is essential to continue researching new recycling methods as well as applications to reduce waste and preserve new resources. In the present study, a simple recycling technology of end-of-life tire (ELT) powder is proposed, and the influence of steel slag as filler is assessed. Europe produces about 7 Mt of steel slag annually, and although most of it is reused as an artificial aggregate, about 15% is still landfilled. Also in the case of steel slag, the study of new applications is mandatory so that the combination of these two waste materials, in a 100% recycled composite fits across different industrial sectors facing the same environmental issue. It was found that the leaching of the slag incorporated in the rubber matrix is reduced and that the ELT powder recycled by this technology gives rise to a well-cohesive material. A good rubber-filler interaction was found by swelling test and differential scanning calorimetry (DSC) analysis. The slag reduces the friction coefficient and increases the thermal conductivity. The experimental results showed how some properties of recycled ELT can be improved by adding the steel slag.
2024
alternative filler for rubber
electric arc furnace slag reuse
Recycled end-of-life tires
recycled rubber characterization
rubber thermal conductivity
waste reduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/84747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact