Natural threats are becoming increasingly frequent and difficult to anticipate, urging public authorities and stakeholders to adopt sustainable methodologies and tools capable of continuously supplying historical and real-time data on hazards and their impacts. Such tools enable the prompt activation of recovery actions, enhance the resilience of citizens and the built environment, and contribute to the achievement of the Sustainable Development Goals (SDGs). This paper presents an interoperable and multipurpose framework developed within the MULTICLIMACT project (GA n. 101123538), designed to enhance urban smartness and sustainability, and to support and improve resilience in municipal decision-making. The framework integrates heterogeneous data sources into a unified environment, covering infrastructures, buildings, and social systems. It also includes physiological monitoring, which collects physiological parameters from wearable sensors in a privacy-preserving way, and microclimate monitoring, which records indoor air quality in inhabited environments. Simulation-based analyses are applied to capture cascading effects of disruptions, while multidimensional indicators (societal, economic, operational, and health-related) are used to quantify resilience. The approach was implemented in the Italian municipality of Camerino, where hazard monitoring systems, impact assessment tools, and indoor comfort data were integrated and validated in the SCP-MULTICLIMACT platform. The proposed approach offers a replicable model for integrating environmental and health data in support of climate resilience and sustainable urban development.
Supporting City Resilience Through Interoperable Platforms and Tools for Monitoring Natural Threats and Evaluating Their Impacts: A Case Study of Camerino
Brutti, Arianna
;Di Pietro, Antonio;Frascella, Angelo;Novelli, Cristiano;
2025-01-01
Abstract
Natural threats are becoming increasingly frequent and difficult to anticipate, urging public authorities and stakeholders to adopt sustainable methodologies and tools capable of continuously supplying historical and real-time data on hazards and their impacts. Such tools enable the prompt activation of recovery actions, enhance the resilience of citizens and the built environment, and contribute to the achievement of the Sustainable Development Goals (SDGs). This paper presents an interoperable and multipurpose framework developed within the MULTICLIMACT project (GA n. 101123538), designed to enhance urban smartness and sustainability, and to support and improve resilience in municipal decision-making. The framework integrates heterogeneous data sources into a unified environment, covering infrastructures, buildings, and social systems. It also includes physiological monitoring, which collects physiological parameters from wearable sensors in a privacy-preserving way, and microclimate monitoring, which records indoor air quality in inhabited environments. Simulation-based analyses are applied to capture cascading effects of disruptions, while multidimensional indicators (societal, economic, operational, and health-related) are used to quantify resilience. The approach was implemented in the Italian municipality of Camerino, where hazard monitoring systems, impact assessment tools, and indoor comfort data were integrated and validated in the SCP-MULTICLIMACT platform. The proposed approach offers a replicable model for integrating environmental and health data in support of climate resilience and sustainable urban development.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

