In the frame of an ongoing archeological study on the Sabina area, a countryside close to Rome, white and red samples of roman wall paintings have been investigated by combining X-ray diffraction and different spectroscopic methodologies, namely laser induced breakdown spectroscopy, μ-Raman and Fourier transform infrared attenuated total reflectance spectroscopy. The used multi-technique approach has allowed the unambiguous identification of the red pigment as red ochre and has provided insight on the provenance of both the pigment and the material used for the realization of the wall paintings. The experimental results have confirmed some assumptions on the use of local materials in roman rural architecture. © 2013 Elsevier B.V. All rights reserved.

A multi-technique approach for the characterization of Roman mural paintings

Gagliardi, S.;Falconieri, M.
2013

Abstract

In the frame of an ongoing archeological study on the Sabina area, a countryside close to Rome, white and red samples of roman wall paintings have been investigated by combining X-ray diffraction and different spectroscopic methodologies, namely laser induced breakdown spectroscopy, μ-Raman and Fourier transform infrared attenuated total reflectance spectroscopy. The used multi-technique approach has allowed the unambiguous identification of the red pigment as red ochre and has provided insight on the provenance of both the pigment and the material used for the realization of the wall paintings. The experimental results have confirmed some assumptions on the use of local materials in roman rural architecture. © 2013 Elsevier B.V. All rights reserved.
μ-Raman;FTIR-ATR;LIBS;Red ochre;Roman fresco;XRD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact