The optical design of a concentration system for a solar furnace is studied, proposing several possible solutions. The foreseen use of this solar furnace is to test components and methodologies for solar applications. The analysis assesses and compares the optical performances of several possible configurations. The possibility of employing in a solar furnace an array of off-axis mirrors as primary optics is examined comparing simulations with various diameters and different configurations. In particular the paper compares spherical mirrors, parabolic mirrors with axis inclined with respect to the heliostat rays and a paraboloid with axis parallel to the rays arriving from the heliostat. It proposes an optimal solution, with spherical mirrors on a spherical envelope, which is compared to the heliostat-axis paraboloid. Considering realisation tolerances, mirrors positioning, mirrors pointing and solar divergence effects they equivalently concentrate the sunlight on the receiver. © 2013 Elsevier Ltd.

Mirrors array for a solar furnace: Optical analysis and simulation results

Graditi, G.;Privato, C.;Cancro, C.;Contento, G.
2014-01-01

Abstract

The optical design of a concentration system for a solar furnace is studied, proposing several possible solutions. The foreseen use of this solar furnace is to test components and methodologies for solar applications. The analysis assesses and compares the optical performances of several possible configurations. The possibility of employing in a solar furnace an array of off-axis mirrors as primary optics is examined comparing simulations with various diameters and different configurations. In particular the paper compares spherical mirrors, parabolic mirrors with axis inclined with respect to the heliostat rays and a paraboloid with axis parallel to the rays arriving from the heliostat. It proposes an optimal solution, with spherical mirrors on a spherical envelope, which is compared to the heliostat-axis paraboloid. Considering realisation tolerances, mirrors positioning, mirrors pointing and solar divergence effects they equivalently concentrate the sunlight on the receiver. © 2013 Elsevier Ltd.
2014
Concentrating solar power;Lighting simulation;Solar energy;Optical design;Solar furnace
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact