In this paper, we analyze the dynamics of an isotropic closed Universe in presence of a cosmological constant term and we compare its behavior in the standard Wheeler–DeWitt equation approach with the one when a Lagrangian fluid is considered in the spirit of the Kuchar–Brown paradigm. In particular, we compare the tunnelling of the Universe from the classically forbidden region to the allowed one, showing that considering a time evolution deeply influences the nature of the model. In fact, we show that in the presence of the Lagrangian fluid, the cosmological singularity is restored both in the classical and the quantum regime. However, in the quantum regime the singularity is probabilistically suppressed for some energy eigenvalues and in the case the latter is equal to zero one recovers the standard WDW case. Finally, we introduce a cut-off physics feature in the Minisuperspace by considering a Polymer quantum mechanical approach limiting our attention to the semi-classical dynamics mainly (the quantum treatment is inhibited by the non-local nature of the Hamiltonian operator). We show that the singularity is again removed, like in the fluid-free model, and a bouncing cosmology emerges so that the present model could mimic a cyclic cosmology.

Specific entropy as a clock for the evolutionary quantization of the isotropic Universe

Montani G.
2020-01-01

Abstract

In this paper, we analyze the dynamics of an isotropic closed Universe in presence of a cosmological constant term and we compare its behavior in the standard Wheeler–DeWitt equation approach with the one when a Lagrangian fluid is considered in the spirit of the Kuchar–Brown paradigm. In particular, we compare the tunnelling of the Universe from the classically forbidden region to the allowed one, showing that considering a time evolution deeply influences the nature of the model. In fact, we show that in the presence of the Lagrangian fluid, the cosmological singularity is restored both in the classical and the quantum regime. However, in the quantum regime the singularity is probabilistically suppressed for some energy eigenvalues and in the case the latter is equal to zero one recovers the standard WDW case. Finally, we introduce a cut-off physics feature in the Minisuperspace by considering a Polymer quantum mechanical approach limiting our attention to the semi-classical dynamics mainly (the quantum treatment is inhibited by the non-local nature of the Hamiltonian operator). We show that the singularity is again removed, like in the fluid-free model, and a bouncing cosmology emerges so that the present model could mimic a cyclic cosmology.
File in questo prodotto:
File Dimensione Formato  
Specific entropy as a clock for the evolutionary quantization of the isotropic Universe.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 908.21 kB
Formato Adobe PDF
908.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/56849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact