The Water-Cooled Lithium–Lead (WCLL) is one of the most promising technologies for power conversion and tritium production in future fusion-powered reactors; it will be implemented in one of the Test Breeding Modules (TBM) inside the ITER reactor and the DEMO EU reactor. However, the simultaneous presence in the system of high-temperature PbLi and high-pressure water poses significant safety issues in the event of an in-box LOCA (Loss Of Coolant Accident). For this reason, a complete understanding of the system response is crucial to avoid extensive damage in such a scenario. This paper describes the status and design features of the LIFUS5/Mod4 facility, an experimental plant that is currently being designed and constructed at ENEA CR Brasimone in the framework of the FP9 EUROfusion Horizon Europe to address these issues. This facility aims at being representative of the geometry and operational conditions of the Test Breeding System (TBS) to allow the precise reproduction of its behavior under simulated incidental scenarios. For this reason, peculiar design choices have been made, which will be extensively discussed throughout this work and which will allow the generation of high-quality data useful for the TBS development. Moreover, the facility is expected to become a test stand for the implementation of different safety functions, to identify the best accident-mitigation strategy. Possible upgrade plans for the facility are described as well, with the chance for it to become a fully functional test stand for any component of the TBS in their operative conditions.
Status, Features, and Future Development of the LIFUS5/Mod4 Experimental Facility Design
Eboli M.;Del Nevo A.
2023-01-01
Abstract
The Water-Cooled Lithium–Lead (WCLL) is one of the most promising technologies for power conversion and tritium production in future fusion-powered reactors; it will be implemented in one of the Test Breeding Modules (TBM) inside the ITER reactor and the DEMO EU reactor. However, the simultaneous presence in the system of high-temperature PbLi and high-pressure water poses significant safety issues in the event of an in-box LOCA (Loss Of Coolant Accident). For this reason, a complete understanding of the system response is crucial to avoid extensive damage in such a scenario. This paper describes the status and design features of the LIFUS5/Mod4 facility, an experimental plant that is currently being designed and constructed at ENEA CR Brasimone in the framework of the FP9 EUROfusion Horizon Europe to address these issues. This facility aims at being representative of the geometry and operational conditions of the Test Breeding System (TBS) to allow the precise reproduction of its behavior under simulated incidental scenarios. For this reason, peculiar design choices have been made, which will be extensively discussed throughout this work and which will allow the generation of high-quality data useful for the TBS development. Moreover, the facility is expected to become a test stand for the implementation of different safety functions, to identify the best accident-mitigation strategy. Possible upgrade plans for the facility are described as well, with the chance for it to become a fully functional test stand for any component of the TBS in their operative conditions.File | Dimensione | Formato | |
---|---|---|---|
Status, Features, and Future Development of the LIFUS5_Mod4 Experimental Facility Design.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.